Primitive point packing

نویسندگان

چکیده

A point in the d-dimensional integer lattice Z d $\mathbb {Z}^d$ is primitive when its coordinates are relatively prime. Two points multiples of one another they opposite, and for this reason, we consider half within lattice, ones whose first non-zero coordinate positive. We solve packing problem that asks largest possible number such absolute values any given sum to at most a fixed k. present several consequences result intersection geometry, theory, combinatorics. In particular, obtain an explicit expression diameter zonotope contained hypercube [ 0 , k ] $[0,k]^d$ and, conjecturally polytope hypercube.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point-primitive Inversive Planes of Odd Order

A famous but still unsolved problem in finite geometries is the question of whether a finite inversive plane J of odd order n is necessarily miquelian, that is, it arises from the plane sections of an elliptic quadric in PG(3,«). The question has been approached from different angles, and it has a positive answer if suitable conditions are added to J. The most classical result in this context i...

متن کامل

Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups

The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).

متن کامل

Flag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type

Let $G$ be an automorphism group of a‎ ‎$2$-$(v,k,4)$ symmetric design $mathcal D$‎. ‎In this paper‎, ‎we‎ ‎prove that if $G$ is flag-transitive point-primitive‎, ‎then the‎ ‎socle of $G$ cannot be an exceptional group of Lie type‎.

متن کامل

Primitive collineation groups of ovals with a fixed point

We investigate collineation groups of a finite projective plane of odd order n fixing an oval and having two orbits on it, one of which is assumed to be primitive. The situation in which the group fixes a point off the oval is considered. We prove that it occurs in a Desarguesian plane if and only if (n + 1)/2 is an odd prime, the group lying in the normalizer of a Singer cycle of PGL(2, n) in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12149