Primitive point packing
نویسندگان
چکیده
A point in the d-dimensional integer lattice Z d $\mathbb {Z}^d$ is primitive when its coordinates are relatively prime. Two points multiples of one another they opposite, and for this reason, we consider half within lattice, ones whose first non-zero coordinate positive. We solve packing problem that asks largest possible number such absolute values any given sum to at most a fixed k. present several consequences result intersection geometry, theory, combinatorics. In particular, obtain an explicit expression diameter zonotope contained hypercube [ 0 , k ] $[0,k]^d$ and, conjecturally polytope hypercube.
منابع مشابه
Point-primitive Inversive Planes of Odd Order
A famous but still unsolved problem in finite geometries is the question of whether a finite inversive plane J of odd order n is necessarily miquelian, that is, it arises from the plane sections of an elliptic quadric in PG(3,«). The question has been approached from different angles, and it has a positive answer if suitable conditions are added to J. The most classical result in this context i...
متن کاملFlag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups
The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).
متن کاملFlag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type
Let $G$ be an automorphism group of a $2$-$(v,k,4)$ symmetric design $mathcal D$. In this paper, we prove that if $G$ is flag-transitive point-primitive, then the socle of $G$ cannot be an exceptional group of Lie type.
متن کاملPrimitive collineation groups of ovals with a fixed point
We investigate collineation groups of a finite projective plane of odd order n fixing an oval and having two orbits on it, one of which is assumed to be primitive. The situation in which the group fixes a point off the oval is considered. We prove that it occurs in a Desarguesian plane if and only if (n + 1)/2 is an odd prime, the group lying in the normalizer of a Singer cycle of PGL(2, n) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematika
سال: 2022
ISSN: ['2041-7942', '0025-5793']
DOI: https://doi.org/10.1112/mtk.12149